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The purpose of this study was to examine child-level pathways in development of prealgebraic
knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and
fluency as mediators of foundational skills/processes. Children (n � 962; mean 7.60 years) were assessed
on general cognitive processes and early calculation, word-problem, and number knowledge at start of
Grade 2; calculation accuracy and calculation fluency at end of Grade 2; and prealgebraic knowledge and
word-problem solving at end of Grade 4. Important similarities in pathways were identified, but path
analysis also indicated that language comprehension is more critical for later word-problem solving than
prealgebraic knowledge. We conclude that pathways in development of these forms of 4th-grade
mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction
for strands of the mathematics curriculum in ways that address individual students’ foundational
mathematics skills or cognitive processes.
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Little is understood about how aspects of mathematical cogni-
tion relate to each other: which are shared or distinct or how
difficulty in one domain corresponds to difficulty in another. Such

understanding would provide theoretical insight into the nature of
mathematics competence and practical guidance about how to
organize curriculum and design instruction. In the present longi-
tudinal study, we focused on two forms of higher-order mathe-
matics among 7- to 10-year-olds: prealgebraic knowledge and
word-problem solving.

Algebra is a high priority area. It represents a gateway to higher
forms of learning in mathematics, science, technology, and engi-
neering and is required for successful participation in the work-
force (National Mathematics Advisory Panel [NMAP], 2008;
RAND Mathematics Study Panel, 2003). Yet, a substantial portion
of students fail to complete an algebra course, and 93% of 17-
year-olds cannot solve multistep algebra problems (U.S. Depart-
ment of Education, 2008). The NMAP (2008) emphasized the need
for “longitudinal research . . . to identify early predictors of suc-
cess or failure with algebra” (p.33). The hope is that “the identi-
fication of these predictors will help guide the design of interven-
tions that will build the foundational skills needed for success with
algebra” (p. 33). However, we identified only several studies that
have examined predictors of algebra performance.

At the same time, performance on word problems is the best
school-age predictor of employment and wages in adulthood (Byn-
ner, 1997; Every Child a Chance Trust, 2009), and word problems
represent a major emphasis in almost every strand of the math
curriculum from kindergarten through high school. As with alge-
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bra, however, word problems are a stumbling block for many
students (Fuchs et al., 2008); they can be a persistent deficit even
when calculation skill is adequate (Swanson, Jerman, & Zheng,
2008); and the cognitive processes involved in word problems
differ from and are more numerous than those underlying calcu-
lation skill (e.g., Fuchs et al., 2010, 2006, 2008). Thus, as with
algebra, word-problem difficulty may be multiply determined and
difficult to prevent.

Given the importance of algebra and word problems, along with
the cognitive complexity of both domains, the purpose of the
present study was to contrast sources of individual differences in
the development of end-of-fourth-grade prealgebraic knowledge
versus word-problem competence. We considered cognitive pro-
cesses (reasoning, language comprehension, working memory,
attentive behavior, processing speed) and foundational mathemat-
ics competencies (calculation skill, understanding about number)
measured at the start of second grade. This permitted us to assess
whether development in these two challenging domains is more
alike or different.

Additionally, although calculation skill is transparently required
for success with both outcomes, disagreement among mathematics
educators focuses on whether calculation accuracy is sufficient or
whether calculation fluency provides added value (e.g., Greene,
2010; Warner, 2006). Consensus, as reflected in state standards,
presently sides on the need for fluency (e.g., Common Core State
Standards Initiative, 2010). Yet, we identified only one study (Carr
& Alexeev, 2011) that examined whether calculation fluency pro-
vides added value over accuracy. This was also a major purpose of
the present study.

Development of Prealgebra and
Word-Problem Competence

Algebra involves symbolizing and operating on numerical rela-
tionships and mathematical structures. Algebraic expressions can
be treated procedurally, by substituting numerical values to yield
numerical results (Kieran, 1990). This suggests that understanding
of arithmetic principles involves generalizations that are algebraic
in nature. Pillay, Wilss, and Boulton-Lewis’s (1998) model of
learning poses three stages in the development of algebraic com-
petence. The first involves arithmetic skill: operating numerically
and understanding of operational laws and relational meaning of
the equal sign (i.e., both sides are the same value) in standard
equations. This provides the foundation for a prealgebraic stage,
characterized by understanding of relational meaning of the equal
sign in nonstandard equations, the concept of unknowns in equa-
tions, and the concept of a variable. This stage supports develop-
ment of the final stage, formal algebraic competence. Pillay et al.’s
(1998) model is consistent with a connection between arithmetic
and algebra, as conceptualized by Blanton and Kaput (2001);
Carraher and Schliemann (2002), and the NMAP (2008). More-
over, the model’s second stage, with its focus on the equal sign’s
relational meaning in nonstandard equations, the concept of un-
knowns in equations, and the concept of a variable, clarifies the
potential connection between arithmetic and algebra, and it cap-
tures essential foci for measuring the progression from arithmetic
to algebra.

Research illustrates how conventional instruction (Powell,
2012) fails to support understanding of the equal sign as relational

(Baroody & Ginsburg, 1983; McNeil & Alibali, 2005). In answer-
ing 5 � 4 � __ � 7, common errors are 9 (i.e., students ignore the
operation to the right side of the equal sign) and 16 (i.e., they add
all knowns; Falkner, Levi, & Carpenter, 1999). Both errors reflect
misunderstanding about the equal sign as operational (signaling
the problem solver to apply an operation). Such confusion, which
often persists into high school (NMAP, 2008), is associated with
difficulty in using algebraic notation to represent word problems
(Powell & Fuchs, 2010) and solve linear equations (Alibali, Knuth,
Hattikudur, McNeil, & Stephens, 2007; Knuth, Stephens, McNeil,
& Alibali, 2006). This literature illustrates how understanding of
the equal sign as a relational symbol represents an important form
of prealgebraic knowledge.

A growing body of research operationalizes prealgebraic knowl-
edge in line with Pillay et al. (1998), in terms of understanding of
the equal sign, variables, and unknowns in nonstandard equations.
In the closest prior study, Fuchs et al. (2012) found that second-
grade arithmetic calculations and word problems are foundational
to such prealgebraic knowledge at third grade. Results also re-
vealed direct contributions of reasoning and language comprehen-
sion, measured at the start of second grade, to prealgebraic knowl-
edge, as well as indirect effects that occurred via third-grade
arithmetic calculations and word problems. By contrast, attentive
behavior and processing speed contributed to prealgebraic knowl-
edge only indirectly, but working memory’s paths (direct and
indirect) were not significant.

In terms of the contributions of calculation accuracy and flu-
ency, a large literature demonstrates a role for one or the other in
a variety of mathematics outcomes. In the only study we identified
that included both variables in the same models to estimate the
contribution of one while controlling for the effects of the other,
Carr and Alexeev (2011) indexed fluency and accuracy at the start
of second grade as students solved 1-digit problems. Growth
mixture modeling was used to estimate the effect of fluency and
accuracy on latent classes that described the mix of strategies
children used over Grades 2 through 4 to solve more complex
addition and subtraction problems. Fluency predicted growth in
strategies, whereas accuracy was associated with strategies used at
the start of second grade. Latent class membership in turn pre-
dicted whether students exceeded, passed, or failed the state’s
fourth-grade mathematics test indexing a variety of skills. The
authors concluded that both dimensions of calculation skill con-
tributed to later math achievement. Yet, as they noted, the study
did not control for conceptual knowledge about number or general
cognitive processes. Also, because the outcome was a general
mathematics achievement test, it was not possible to identify
whether fluency and accuracy affect different types of higher-order
mathematics outcomes in varying ways.

Extensions to the Literature and Hypotheses

We extended Carr and Alexeev (2011), Fuchs et al. (2012), and
other studies (e.g., Lee, Ng, Bull, Pe, & Ho, 2011; Tolar, Leder-
berg, & Fletcher, 2009) in six ways. First, we examined direct
effects of calculation accuracy and fluency on two specific, highly
valued outcomes, while evaluating accuracy and fluency as poten-
tial mediators of earlier foundational skills/processes. Second, we
created a more stringent test of the predictors of prealgebra knowl-
edge by contrasting them to the predictors involved in later word
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problems. This allowed us to assess which predictors of prealgebra
are unique to or similar across the two higher-order forms of
mathematical competence. Third, in examining sources of individ-
ual differences in the development of prealgebra, we considered a
longer timeframe, from start of second through end of fourth
grade, when prealgebraic thinking is gaining sophistication. Fifth,
our large sample provided power to detect more subtle effects.
Sixth, as outlined by Duncan, Engel, Claessens, and Dowsett
(2014), we conducted within-sample robustness checks on our key
findings. Our hypotheses were as follows.

Direct Effects of Intermediary Calculation
and Fluency

We expected a direct, unique contribution of intermediary cal-
culation accuracy and fluency on each fourth-grade outcome. We
based this on Pillay et al.’s (1998) model and Carr and Alexeev’s
(2011) findings. Moreover, calculation accuracy is a transparent
component of prealgebra tasks and word-problem solving, and a
longstanding assumption in the mathematics and reading litera-
tures poses that fluency on lower-level skill frees attentional and
working memory resources to permit students to focus on the
cognitive complexities of higher-order performance (Geary et al.,
2008; Kim, Wagner, & Foster, 2011). In mathematics, calculation
fluency may also reflect understanding and generalization of arith-
metic operational laws, which may directly support prealgebraic
thinking and generation of word-problem models.

Relation Between Fourth-Grade Prealgebra
Knowledge and Word-Problem Solving

We hypothesized a strong relation between fourth-grade preal-
gebra and word problems for three reasons. First, in a randomized
control trial, Fuchs et al. (2014) found that word-problem instruc-
tion (that did not include instruction on calculations) improved
prealgebra performance. Second, relational understanding of the
equal sign, reflected in measures of prealgebraic knowledge, is
associated with the ability to use algebraic notation to represent
word problems (Powell & Fuchs, 2010). Third, word-problem
solving reflects understanding of relationships between known and
unknown quantities and may therefore be supported by prealge-
braic thinking. A key source of error in word problems involves
transforming problem narratives into algebraic equations (Geary et
al., 2008). For example, competent problem solvers translate “Sue
had 3 more than Bill” to S � 3 � B, by recognizing the smaller
quantity must increase to equal the larger quantity. Yet, a common
error is S � 3 � B.

Direct and Indirect Effects of Foundational (Start-of-
Second-Grade) Processes

We anticipated that foundational calculation skill and under-
standing about number would directly affect both outcomes, while
expecting indirect effects for these foundational math competen-
cies via intermediary calculation accuracy and fluency. In terms of
general cognitive processes, we anticipated a combination of direct
and indirect effects for reasoning and language comprehension on
both outcomes (e.g., Fuchs et al., 2012 for prealgebra; e.g., Fuchs
et al., 2010 for word problems), but expected lower-level processes

(attentive behavior, processing speed) to contribute only indirectly
via intermediary math skills. This was the case in Fuchs et al.
(2012), the closest prior study on prealgebra, and a connection for
calculation skill with attentive behavior and processing speed has
been widely established. Finally, we hypothesized direct and in-
direct effects for working memory. We did so because, even
though its effects were not significant in Fuchs et al. (2012), a
longstanding assumption holds that working memory supports
cognitively complex, multistep problem solving, as required for
both outcomes, and individual differences in working memory
may emerge as a predictor of the more complex prealgebra tasks
expected of fourth graders (compared to third grade, as in Fuchs et
al., 2012).

Method

Participants

At start of second grade, we identified 1,062 second-grade
children for participation to represent low-, average-, and high-
performing students. By spring of fourth grade (3 school years
later), 135 of these students had moved to schools beyond our
reach. After dropping those cases, 962 students with complete data
remained, providing a representative sample as reflected on the
Wide Range Achievement Test-3 (WRAT; Wilkinson, 1993)
Arithmetic subtest (M � 100.61; SD � 10.87) and Reading subtest
(M � 100.92; SD � 15.42). The 962 children were in 95 second-
grade classrooms in 17 schools. They dispersed to 238 third-grade
classrooms in 80 schools and then to 295 fourth-grade classrooms
across 91 schools (creating too many unique classroom and school
sequences to make clustering relevant in our statistical models).
There were no significant differences on any demographic or
performance variable at the start of Grade 2 between students who
remained in the study and those who moved. Of the 962 students,
52% were male; 83.25% received subsidized lunch; and 42% were
African American, 27% Caucasian, and 25% White Hispanic. At
start of second grade, 5.20% had been retained 1 school year; 5%
received special education services; and 12% received English
language services. Mean age was 7.60 (SD � 0.35).

Control Variable

The control variable was Word Problems. Following Jordan and
Hanich (2000), Word Problems comprises 14 brief word problems
involving change, combine, compare, and equalize relationships
and requiring single-digit addition or subtraction for solution (i.e.,
sums of 7, 8, or 9 or subtrahends of 6, 7, 8, or 9; there are no
addends or minuends of zero or one; answers to the subtraction
problems are from 2 to 6). The tester reads each item aloud;
students have 30 sec to respond and can ask for rereading(s) as
needed. The score is the number of correct answers. On this
sample, � was .87.

Foundational (Start-of-Second-Grade) Mathematics
and Cognitive Measures

Calculations. WRAT-3-Arithmetic (Wilkinson, 1993) com-
prises an oral and a written component. The 15-item oral portion
focuses on early numerical competencies (e.g., counting objects,
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identifying Arabic numerals, holding up a specified number of
fingers). Because we wanted to estimate start-of-second-grade
calculation skill, we relied on the written component, which pro-
vides students 10 min to answer calculation problems of increasing
difficulty. All students finished working in �10 min. In this
sample, the mean score on the written portion at start of second
grade was 4.98 (SD � 1.91). The first seven items on the written
portion are 1- and 2-digit adding or subtracting problems involv-
ing basic facts without regrouping. With a SD of 1.91, 68% of
participants were within a score of zero and 7. On this sample,
� was .89.

Number understanding. With Number Line Estimation
(Siegler & Booth, 2004), children locate Arabic numerals on a
number line marked with 0 and 100 as endpoints. A number line
is presented with a target number (3, 4, 6, 8, 12, 17, 21, 23, 25, 29,
33, 39, 43, 48, 52, 57, 61, 64, 72, 79, 81, 84, 90, 96) shown above
the line. Children place the target number on the line, without a
time limit. The score is the absolute difference between the stu-
dent’s placement and the actual placement, averaged over trials.
Lower scores indicate stronger performance, but we multiplied
scores by �1 before running correlational analyses. Test–retest
reliability on 87 children was .85.

Reasoning. WASI Matrix Reasoning (Wechsler, 1999) in-
cludes pattern completion, classification, analogy, and serial rea-
soning tasks. Children complete matrices. From each, a section is
missing, and the child restores the matrix by selecting from five
options. For example, an item might show a 2-by-2 grid with the
same picture of a box, half of one color and half another color, in
three cells and a question mark in the fourth cell. The bottom of the
page shows a row of five boxes, each with the same colors. The
tester instructs the child to say which of the five boxes goes where
the question mark is. On this sample, � was .90.

Language comprehension. Woodcock Diagnostic Reading
Battery (WDRB)–Listening Comprehension (Woodcock, 1997)
measures the ability to understand sentences or passages. With 38
items, students supply the word missing at the end of sentences or
passages that progress from simple verbal analogies and associa-
tions to discerning implications. The test manual provides exam-
ples of correct responses to guide the tester’s scoring. On this
sample, � was .81.

Working memory. We used the dual-task central executive
Listening Recall subtest from the Working Memory Test Battery
for Children (WMTB-C; Pickering & Gathercole, 2001), with
which the child determines if each sentence in a series is true and
then recalls the last word in each sentence. It has six items at span
levels from 1–6 to 1–9. Passing four items at a level moves the
child to the next level. At each span level, the number of items to
be remembered increases by one. Failing three items at a given
span terminates the subtest. We used the trials correct score.
Test–retest reliability on 82 students was .82.

Attentive behavior. SWAN is an 18-item teacher rating scale
(Swanson et al., 2012) that samples items from the Diagnostic and
Statistical Manual of Mental Disorders-IV (American Psychiatric
Association, l994) criteria for Attention Deficit/Hyperactivity Dis-
order for inattention (Items 1–9) and hyperactivity/impulsivity
(Items 10–18). Validity is supported in the literature (Arnett et al.,
2013; Lakes, Swanson, & Riggs, 2012; Swanson et al., 2012).
Items are rated as 1 � Far Below, 2 � Below, 3 � Slightly Below;
4 � Average, 5 � Slightly Above, 6 � Above, 7 � Far Above. We

report data for the attentive behavior subscale as the average rating
across the nine relevant items. We selected this subscale to index
attentive behavior, or the ability to maintain focus of attention.
SWAN correlates well with other dimensional assessments of
behavior related to attention. On this sample, � was .99.

Processing speed. With WJ-III Visual Matching (Woodcock,
McGrew, & Mather, 2001), children locate and circle two identical
numbers in each row of six numbers. They have 3 min to complete
60 rows. On this sample, reliability was .86.

Intermediary (End-of-Second-Grade)
Mathematics Measures

Calculation accuracy. With Addition Strategy Assessment
(Geary, Hoard, Byrd-Craven, & DeSoto, 2004), 14 simple addition
problems are presented horizontally, one at a time at the center of
a computer screen. Addends are 2–9; doubles problems are not
used. The child solves each problem without paper and is directed
to use whatever strategy is easiest to obtain the answer. There is no
time limit. The score is the number of items answered correctly.
On this sample, � was .93.

Calculation fluency. From the Second-Grade Calculations
Battery (Fuchs, Hamlett, & Powell, 2003), we administered two
subtests of single-digit addition: Sums to 12 and Sums to 18. For
each, students have 1 min to complete 25 problems. We combined
the subtests to create one score. On a sample of 79 students,
test–retest reliability was .87.

Mathematics Outcome (End-of-Fourth-Grade)
Measures

Word problems. With the Iowa Test of Basic Skills–Level 10
(ITBS; Hoover, Hieronymous, Dunbar, & Frisbie, 1993), students
respond in multichoice format to 24 word problems that require a
single-step calculation (3 items); multiple-step calculations (7
items); identify insufficient information (2 items); choose solution
methods (2 items); read amounts on bar graphs (2 items); locate
information in specific cell in table (1 item); and compare quan-
tities and interpret relationships and trends to determine rank (2
items), determine a sum (1 item), determine difference (1 item),
find ratio (1 item); understand underlying relationship (1 item);
and generalize (1 item). On this sample, � was .83.

Prealgebraic knowledge. The Test of Prealgebraic Knowl-
edge (Fuchs, Seethaler, & Powell, 2009) comprises two types of
problems. The first (20 items) involves mathematical equivalence
items with letters standing for missing quantities: 18 in nonstan-
dard format (e.g., y � 4 � 9; 1 � 5 � 4 � x; 8 – 4 � 6 – y; 8 –
x � 3 � 3); two in standard format (i.e., 1 � 5 � x; 8 – 3 � y).
The second problem type (4 items) involves function tables, each
of which shows a 2-column table. The first column shows a
variable, and the second column shows a function involving that
variable; each row shows a value for the variable and the resulting
value for the function. In one row, the value of the function is
empty; the task is to complete that row. The functions are x � 3,
y – 6, 2x � 1, and 3y. The tester demonstrates how to complete a
problem for each problem type (i.e., to ensure students understand
the task demands). Testers provide 8 min for students to complete
the first problem type; as much time as needed (until all but two
students are finished) to complete the other problem type. The
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correlation between the two problem types at fourth grade was .61.
The pattern of results was the same for the two problem types; so
we used the total score. On this sample, � was .86.

Procedure

Testers were trained to criterion at each testing occasion and
used standard directions for administration. In September of sec-
ond grade, they administered calculation and word-problem tests
in large groups. In September-October of second grade, they
administered the number line and general cognitive measures in
individual sessions. In spring of second grade, they administered
the calculation accuracy measure individually and the fluency
measure in large groups. In spring of fourth grade, they adminis-
tered word-problem solving and prealgebraic knowledge measures
in small groups. All individual sessions were audiotaped; 15% of
tapes were selected randomly, stratifying by tester, for accuracy
checks by an independent scorer. Agreement exceeded 99%.

Data Analysis and Results

To investigate the relations of foundational skills and pro-
cesses, intermediary calculation competence, and later higher-
level mathematics outcomes, we estimated a minimally re-
stricted path model that included direct as well as indirect paths
of seven foundational processes to both end-of-fourth-grade
math outcomes, using the post hoc MODEL INDIRECT com-
mand in Mplus 7.31 (Muthén & Muthén, 1998 –2012). All
variables submitted to the model were continuous, and we
applied alpha of .05 to evaluate significance. Because the eighth
foundational skill, word-problem solving, represented an au-
toregressive effect on the word-problem outcome (and because
we did not have a beginning-of-second-grade index of prealge-
bra due to expected floor effects), we only modeled beginning-
of-second-grade word-problem’s direct effect on the outcomes
with the goal of adjusting results for prior skill. In the rest of the
paper, we use the term foundational processes to refer to the
seven foundational variables of interest (excluding beginning-
of-Grade-2 word problems). Global fit statistics indicated this
model fit the data well (see Kline, 2011), �(2)

2 � 3.641, p �
.162; RMSEA � .029 (90% CI � [.000, .076]), p � .706;
CFI � .998; TLI � .959; and variance/covariance residuals all
below � .10. We also tested the difference in model fit between
this model and one in which the direct paths from each variable
to the two outcomes were simultaneously constrained to equal-
ity. This constrained model fit the data significantly worse than
our model in which all direct effects were estimated freely,
�(10)

2 � 24.58, p � .006.
Equality of direct effects, indirect effects, and total effects on

the later outcomes were calculated on standardized estimates
using the MODEL CONSTRAINT command. Note that because
the two fourth-grade outcomes were measured on approxi-
mately the same scale (min, max, mean, standard deviation
[SD]), a change in 1 SD is substantively comparable between
the outcomes. We conducted tests of the equality of paths that
were significant for one but not the other outcome to determine
whether effects were significantly different across the two
outcomes. We opted for this criterion, despite its arbitrariness
(i.e., two significant paths could significantly differ from one

another), because null-hypothesis significance testing forces a
dichotomous decision about whether an effect is different from
0 and because we wanted to test actual differences in cases
where one might be tempted to conclude that an effect is
important for one outcome but not for another.1

Table 1 shows zero-order correlations among the variables of
interest. All were positive, but none showed evidence of ex-
treme collinearity (tolerances � .50) when predictors were
entered into simple regression models for the two outcomes.
Because skew, kurtosis, and extreme values were detected in
our data, and because ceiling effects were detected for the
intermediary accuracy variable, we used the CENSORED op-
tion for accuracy and requested 95% bias-corrected bootstrap
confidence intervals (BCBS CI) based on 5,000 replications to
account for non-normality violations. The default estimator for
models including censored variables, WLSMV, was retained.

Direct effects are reported in Table 2, indirect effects in
Table 3, and total effects (sum of direct and indirect effects) in
Table 4. Each table shows unstandardized results with the
corresponding 95% BCBS CI as well as the standardized path/
effect. Figure 1 depicts the significant effects (bolded lines) and
nonsignificant effects (dashed lines). Residual correlations
were .22 between the intermediary variables and .40 between
the higher-order mathematics outcomes. Statistical significance
of each path/effect was judged by the unstandardized 95%
BCBS CI, but standardized paths/effects are presented through-
out the remainder of the Results section to give readers a sense
of path/effect magnitude.

To assist readers in interpreting the magnitude of path values, we
explain the direct and one indirect effect of foundational number
understanding on the word-problem outcome. The standardized path
value (	) for the direct effect indicates that, while controlling for other
important mathematical skills and cognitive processes, every increase
in foundational number understanding of one standard deviation (SD)
is associated with a .15 SD higher performance in later word-problem-
solving skill. The significant indirect effect for number understanding
on the word-problem outcome via intermediary calculation fluency is
the product of paths a and b, in which every SD increase in number
understanding is associated with a .07 SD higher performance in
intermediary calculation fluency (path a) and every SD increase in
intermediary calculation fluency is associated with a .12 SD (path b)
higher performance in fourth-grade word-problem solving, control-
ling for the other variables in the model. The product of the a and b
paths produces an indirect effect of .01 (.07�.12), which means that
end-of-fourth-grade word-problem solving is expected to change by
.01 SD indirectly, through fluency, per one SD change in number
understanding.

Together, this direct and indirect effect suggests that (a)
stronger number understanding is directly associated with per-
formance on intermediary calculation fluency and later word-
problem skill and (b) early number understanding’s effect on

1 As a function of the review process, we ran tests separately the equality
of all effects of interest: seven direct effects from foundational skills to
higher-level outcomes, 14 indirect effects from foundational skills through
intermediary skills to higher-level outcomes, and seven total effects from
foundational skills to higher-level outcomes. The pattern of results was the
same. Direct effects of language comprehension as well as the total effect
of language comprehension distinguished between the two outcomes.
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later word-problem is further enhanced via stronger intermedi-
ary calculation fluency. Across the direct and two indirect
effects, the total unique effect for number understanding on the
word-problem solving outcome is .16 (.15 for the direct ef-
fect � .01 for the indirect effect via intermediary calculation
accuracy � .01 for the indirect effect via intermediary calcu-
lation fluency; the apparent discrepancy in total and summed
effects are due to rounding).

Direct Effects of Foundational Skills/Processes on
Intermediary Skills (a Paths) and Direct Effects of
Intermediary Skills on the Outcomes (b Paths)

We describe direct paths from foundational processes to the two
forms of intermediary calculation competence and direct paths
from the two forms of intermediary calculation competence on the
two fourth-grade outcomes, because these effects respectively

Table 1
Means, Standard Deviations, and Correlations (N � 962)

Variable type/Variable

Correlations

Mean SD 1 2 3 4 5 6 7 8 9 10 11 12

Later Higher-Level/End of grade 4
1. Word-problem solving skill 16.06 5.34 —
2. Prealgebraic knowledge 19.36 6.78 .71 —

Intermediary/End of Grade 2
3. Calculation accuracy 12.75 1.93 .33 .34 —
4. Calculation fluency 25.46 10.36 .39 .36 .33 —

Foundational/Beginning of Grade 2
5. Calculation skill 4.99 1.90 .47 .47 .30 .44 —
6. Word-problem-solving skill 6.89 3.64 .64 .57 .27 .28 .53 —
7. Number understanding 15.10 6.70 .45 .40 .22 .24 .32 .39 —
8. Reasoning 14.97 4.45 .42 .39 .23 .24 .27 .38 .22 —
9. Language comprehension 16.82 4.70 .45 .33 .09 .11 .18 .45 .28 .27 —

10. Working memory 7.19 3.54 .43 .40 .23 .19 .27 .44 .26 .36 .40 —
11. Attentive behavior 38.48 12.21 .50 .49 .27 .35 .42 .43 .28 .38 .24 .31 —
12. Processing speed 11.45 2.64 .34 .36 .20 .26 .30 .32 .21 .24 .17 .28 .33 —

Note. Word-problem-solving skill is Iowa Test of Basic Skill–Level 10–Math. Prealgebraic knowledge is Test of Prealgebraic Knowledge. Calculation
accuracy is Addition Strategy Assessment. Calculation fluency is Second-Grade Calculations Battery. Calculation skill is Wide Range Achievement
Test–Arithmetic. Word-problem-solving skill is Word Problems. Number understanding is Number Line Estimation (reverse scored). Reasoning is
Wechsler Abbreviated Scale of Intelligence–Matrix Reasoning. Language comprehension is Woodcock Diagnostic Reading Battery–Listening Compre-
hension. Working memory is Working Memory Test Battery for Children–Listening Recall. Attentive behavior is Strengths and Weaknesses of ADHD
Symptoms and Normal Behavior Rating Scales. Processing speed is Woodcock-Johnson Tests of Achievement III–Visual Matching.

Table 2
Direct Effects of Foundational Skills and Processes to Intermediary Skills and Later Higher-Level Mathematics Outcomes (N � 962)

Variable type/Variable

Intermediary calculation
accuracy

Intermediary calculation
fluency

Later word-problem-
solving skill

Later prealgebraic
knowledge

Path 95% BCBS CI 	 Path 95% BCBS CI 	 Path 95% BCBS CI 	 Path 95% BCBS CI 	

Foundational
Calculation skill .21 [.083, .343] .14 1.75 [1.382, 2.091] .32 .12 [�.034, .270] .04a .37 [.155, .592] .10a

Number understanding .04 [.004, .071] .08 .11 [.011, .210] .07 .12 [.079, .158] .15 .13 [.077, .179] .13
Reasoning .05 [.003, .100] .08 .16 [.008, .300] .07 .10 [.047, .164] .09 .13 [.048, .217] .09
Language comprehension �.06 [�.106, �.009] �.09 �.07 [�.205, .077] �.03 .17 [.116, .225] .15a .08 [�.004, .147] .05b

Working memory .10 [.032, .160] .12 .03 [�.168, .210] .01 .09 [.010, .167] .06 .14 [.029, .242] .07
Attentive behavior .03 [.006, .048] .12 .13 [.069, .186] .15 .06 [.041, .087] .15 .09 [.063, .124] .17
Processing speed .09 [.009, .172] .08 .36 [.101, .613] .09 .08 [�.016, .167] .04a .21 [.074, .346] .08a

Intermediary
Calculation accuracy .13 [.041, .219] .07 .23 [.116, .346] .10
Calculation fluency .06 [.036, .087] .12 .04 [.007, .081] .07

Note. BCBS CI is bias-corrected bootstrap confidence interval; intervals not including 0 signify the path is significantly different from 0 at � � .05. 	
is standardized path. Underlined estimates indicate that paths were tested for equality between the outcomes; different letters within a row within an
intermediary skill/outcome indicate significant differences between direct effects. Intermediary calculation accuracy is Addition Strategy Assessment.
Intermediary calculation fluency is Second-Grade Calculations Battery. Later word-problem-solving skill is Iowa Test of Basic Skill–Level 10–Math. Later
prealgebraic knowledge is Test of Prealgebraic Knowledge. Calculation skill is Wide Range Achievement Test–Arithmetic. Number understanding is
Number Line Estimation (reverse scored). Reasoning is Wechsler Abbreviated Scale of Intelligence–Matrix Reasoning. Language comprehension is
Woodcock Diagnostic Reading Battery–Listening Comprehension. Working memory is Working Memory Test Battery for Children–Listening Recall.
Attentive behavior is Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Rating Scales. Processing speed is Woodcock-Johnson Tests
of Achievement III–Visual Matching.
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represent the a and b paths for this study’s indirect effects. The
direct paths from foundational processes to intermediary calcula-
tion accuracy were all significant. For foundational calculation
skill, the 	 of .14 indicates that every increase in foundational
calculation skill of 1 SD, is associated with a .14 SD higher
performance in intermediary calculation accuracy, when control-
ling for other foundational processes. For both working memory
and attentive behavior, a 1 SD increase is associated with a .12 SD
higher score in accuracy; for every SD increase in each of the
following—number understanding, reasoning, and processing
speed—the corresponding performance in accuracy is .08 SD
higher. The direct effect of language comprehension on interme-
diary calculation accuracy was negative. This was unexpected
theoretically and statistically, given positive zero-order correla-
tions, and likely represents a suppressor effect. Both direct paths
from intermediary calculation accuracy (b paths) to outcomes were
significant, with a standardized effect on word-problem solving of
.07 and an effect on prealgebraic knowledge of .10, controlling for
calculation fluency, all other foundational processes, and initial
word-problem skill.

Direct paths to intermediary calculation fluency were significant
for each foundational process except language comprehension and
working memory. Every increase in foundational calculation skill
of 1 SD is associated with a .32 SD higher score in intermediary
calculation fluency. For attentive behavior, a 1 SD increase is
associated with a .15 SD higher score in fluency; for processing

speed, a .09 SD higher score; and for number understanding and
reasoning, a .07 SD higher score. Both direct paths from interme-
diary calculation fluency (b paths) to outcomes were significant,
with an effect on word-problem solving of .12, and an effect on
prealgebraic knowledge of .07.

Pathways to Word-Problem Solving

Five foundational processes (number understanding, reasoning,
language comprehension, working memory, attentive behavior)
had significant direct paths to the word-problem outcome, with
respective standardized path values of .15, .09, .15, .06, and .15.
(The autoregressive effect of foundational word-problem solving
skill, not shown in Table 2, also accounted for unique variance
with a standardized path value of .31.) Direct effects for founda-
tional calculation skill and processing speed were not significant.
Indirect effects via intermediary calculation accuracy were signif-
icant for all, each with 95% BCBS CIs not including 0. However,
the language comprehension indirect effect, with its negative
value, likely represents a suppressor effect. Indirect effects via
intermediary calculation fluency were significant for foundational
calculation skill, number understanding, reasoning, attentive be-
havior, and processing speed but not for language comprehension
or working memory. Total effects were significant for calculations
(.09), number understanding (.16), reasoning (.10), language com-

Table 3
Specific Indirect Effects of Foundational Skills Through Intermediary Calculation Skills on Later
Higher-Level Math Outcomes (N � 962)

Foundational
skill/Process

Through intermediary accuracy

To later word-problem-solving skill To later prealgebraic knowledge

Path 95% BCBS CI 	 Path 95% BCBS CI 	

Calculation skill .028 [.007, .063] .010 .049 [.019, .100] .014
Number understanding .005 [.001, .012] .006 .008 [.001, .019] .008
Reasoning .006 [.001, .017] .005 .011 [.001, .027] .008
Language comprehension �.008 [�.019, �.001] �.007 �.013 [�.029, �.003] �.009
Working memory .012 [.003, .028] .008 .022 [.007, .046] .012
Attentive behavior .004 [.001, .009] .008 .006 [.001, .014] .012
Processing speed .012 [.002, .029] .006 .021 [.004, .048] .008

Through intermediary fluency

Calculation skill .106 [.060, .166] .038 .076 [.013, .150] .021
Number understanding .007 [.001, .015] .009 .005 [.001, .014] .005
Reasoning .010 [.001, .022] .008 .007 [.001, .019] .005
Language comprehension �.004 [�.014, .004] �.004 �.003 [�.012, .002] �.002
Working memory .002 [�.011, .014] .001 .001 [�.007, .013] .001
Attentive behavior .008 [.004, .013] .018 .006 [.001, .013] .010
Processing speed .022 [.007, .046] .011 .016 [.002, .040] .006

Note. Three decimal places are reported for indirect effects to help readers distinguish among such small
values. BCBS CI is bias-corrected bootstrap confidence interval; intervals not including 0 signify the path is
significantly different from 0 at � � .05. 	 is standardized path. Intermediary Calculation accuracy is Addition
Strategy Assessment. Later word-problem-solving skill is Iowa Test of Basic Skill–Level 10–Math. Later
prealgebraic knowledge is Test of Prealgebraic Knowledge. Calculation skill is Wide Range Achievement
Test–Arithmetic. Number understanding is Number Line Estimation (reverse scored). Reasoning is Wechsler
Abbreviated Scale of Intelligence–Matrix Reasoning. Language comprehension is Woodcock Diagnostic Read-
ing Battery–Listening Comprehension. Working memory is Working Memory Test Battery for Children–
Listening Recall. Attentive behavior is Strengths and Weaknesses of ADHD Symptoms and Normal Behavior
Rating Scales. Processing speed is Woodcock-Johnson Tests of Achievement III–Visual Matching. Intermediary
calculation fluency is end of Grade 2 Second-Grade Calculations Battery.
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prehension (.14), working memory (.07), attentive behavior (.17),
and processing speed (.05).

Pathways to Prealgebraic Knowledge

Six foundational processes had significant direct paths to the
prealgebraic knowledge outcome: calculations (.10), number un-
derstanding (.13), reasoning (.09), working memory (.07), atten-
tive behavior (.17), and processing speed (.08). (The autoregres-
sive effect of foundational word-problem solving skill, not shown
in Table 2, also accounted for unique variance with a standardized
path value of .24.) The direct effect of language comprehension
was not significant. Indirect effects via intermediary calculation
accuracy were significant for all, each with a path coefficient of
.01 except for language comprehension, with a �.01 value likely
representing a suppressor effect. Indirect effects via intermediary
calculation fluency were significant for foundational calculations
(.02), number understanding (.01), reasoning (.01), attentive be-
havior (.01), and processing speed (.01), not for language compre-
hension or working memory. Total effects were significant for
calculation skill (.14), number understanding (.14), reasoning
(.10), working memory (.08), attentive behavior (.19), and pro-
cessing speed (.10), but not language comprehension.

Tests of Equality Constraints

Underlined estimates in Table 2 indicate that direct paths were
tested for equality between the two outcomes for calculation skill,
language comprehension, and processing speed. No estimates in
Table 3 are underlined because none of the indirect paths through
accuracy or through fluency differed in statistical significance
status between the two outcomes. Underlined estimates in Table 4
indicate that the total effect for language comprehension was
tested for equality between the two outcomes. The 95% BCBS CI
for the difference between standardized direct effects from lan-
guage comprehension to the two outcomes revealed that the two

were significantly different, CI [.040, .156], as were the total
effects for language comprehension, CI [.041, .158]. By contrast,
neither the direct effects from calculation to the two outcomes nor
processing speed to the two outcomes were significantly different,
[�.120, .003] and [�.100, .011], respectively, controlling for the
other foundational and intermediary variables in the model.

Within-Sample Robustness Checks

As outlined by Duncan et al. (2014), we also conducted
within-sample robustness checks on our key findings: Pathways
to later word-problem and prealgebra competence differ in
terms of language comprehension direct effects and language
comprehension total effects. One robustness check examined
the reliability of results; the other addressed the generalizability
of results. To examine reliability, we created two subsamples
consisting of odd-numbered observations and even-numbered
observations. In separate odd-even models, 95% BCBS CIs for
the difference in standardized effects corroborated both find-
ings in both subsamples. Language comprehension direct ef-
fects differed between the two outcomes, with respective CIs of
[.022, .182] and [.026, .193]. Language comprehension total
effects differed between the two outcomes, with respective CIs
of [.022, .181] and [.026, .193].

To examine generalizability, we analyzed two subgroups in
our sample, children with economic disadvantage and economic
advantage, operationalized with a dichotomous variable distin-
guishing between students who qualified for federal lunch sub-
sidy (n � 800 for the subsample qualifying for subsidized
lunch; n � 161 for the subsample that did not qualify; this
variable was missing for one student). In the economic disad-
vantage sample, the difference in the language comprehension
direct effect and the language comprehension total effect for
algebra versus word problems was corroborated. Respective CIs
were [.032, .161] and [.033, .161]. Direct effect path coeffi-
cients were .15 for the word-problem outcome versus .06 for the

Table 4
Total Effects of Foundational Skills and Processes on Later Higher-Level Math Outcomes
(N � 962)

Foundational
skill/Process

On later word-problem-solving skill On later prealgebraic knowledge

Estimate 95% BCBS CI 	 Estimate 95% BCBS CI 	

Calculation skill .25 [.103, .401] .09 .49 [.284, .703] .14
Number understanding .13 [.091, .169] .16 .14 [.090, .193] .14
Reasoning .12 [.061, .182] .10 .15 [.065, .238] .10
Language comprehension .16 [.105, .215] .14a .06 [�.019, .132] .04b

Working memory .10 [.023, .180] .07 .16 [.053, .265] .08
Attentive behavior .08 [.052, .098] .17 .11 [.075, .137] .19
Processing speed .11 [.017, .198] .05 .25 [.108, .381] .10

Note. BCBS CI is bias-corrected bootstrap confidence interval; intervals not including 0 signify the effect is
significantly different from 0 at � � .05. 	 is standardized effect. Underlined estimates indicate that effects were
tested for equality between the outcomes; different letters within a row within an intermediary skill/outcome
indicate significant differences between total effects. Later word-problem-solving skill is Iowa Test of Basic
Skill–Level 10–Math. Later prealgebraic knowledge is Test of Prealgebraic Knowledge. Calculation skill is
Wide Range Achievement Test–Arithmetic. Number understanding is Number Line Estimation (reverse scored).
Reasoning is Wechsler Abbreviated Scale of Intelligence–Matrix Reasoning. Language comprehension is
Woodcock Diagnostic Reading Battery–Listening Comprehension. Working memory is Working Memory Test
Battery for Children–Listening Recall. Attentive behavior is Strengths and Weaknesses of ADHD Symptoms and
Normal Behavior Rating Scales. Processing speed is Woodcock-Johnson Tests of Achievement III–Visual
Matching.
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prealgebra outcome; total effect path coefficients were .15 for
the word-problem outcome versus .05 for the prealgebra out-
come. (Mean performance on the language comprehension pre-
dictor, the word-problem outcome, and the prealgebra outcome,
respectively, were 16.11 [SD � 4.54; range: 1–32], 15.54
[SD � 5.17; range: 3–29], and 18.87 [SD � 6.62; range 2–31].)

By contrast, in the economic advantage sample, the direct and
total effects for language comprehension were not significantly
different for prealgebra versus word problems. Respective CIs

were [�.128, .171] and [�.114, .181]. Direct effect path coef-
ficients were .18 for the word-problem outcome and .17 for the
prealgebra outcome; total effect path coefficients were .17 for
the word-problem outcome and .14 for the prealgebra outcome.
(Mean performance on the language comprehension predictor,
the word-problem outcome, and the prealgebra outcome, re-
spectively, were 20.32 [SD � 3.84; range � 5–27], 18.63
[SD � 5.45; range � 6 –29], and 21.78 [SD � 7.05; range �
5–31].)

Figure 1. Path analysis diagram showing hypothesized direct and indirect paths from beginning of Grade
2 foundational skills and processes to end of Grade 4 higher-level mathematics outcomes through end of
Grade 2 intermediary calculation skills. Solid lines represent significant direct paths. Dashed lines represent
nonsignificant direct paths. Tested indirect paths are listed to the left of each foundational skill/process;
significant indirect paths have been bolded. Word-problem solving skill is Word Problems; shading
indicates this variable had only direct and not indirect paths to the outcomes. Calculation skill is Wide
Range Achievement Test-Arithmetic. Number understanding is Number Line Estimation (reverse scored).
Reasoning is Wechsler Abbreviated Scale of Intelligence–Matrix Reasoning. Language comprehension is
Woodcock Diagnostic Reading Battery–Listening Comprehension. Working memory is Working Memory
Test Battery for Children–Listening Comprehension. Working memory is Working Memory Test Battery
for Children–Listening Recall. Attentive behavior is Strengths and Weaknesses of ADHD Symptoms and
Normal Behavior Rating Scales. Processing speed is Woodcock-Johnson tests of Achievement III–Visual
Matching. Intermediary calculation accuracy (ACC) is Addition Strategy Assessment. Intermediary calcu-
lation fluency (FLU) is Second-Grade Calculations Battery. Later word-problem solving skill (WP) is Iowa
Test of Basic Skill–Level 10 –Math. Later prealgebraic knowledge (ALG) is Test of Pre-Algebraic
Knowledge.
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Discussion

The purpose of this study was to examine child-level pathways
in the development of prealgebraic knowledge versus word-
problem solving, while evaluating intermediary calculation accu-
racy and fluency as potential mediators of foundational mathemat-
ics skills and cognitive processes. We identified important
similarities along with a major distinction in the role of founda-
tional mathematics and cognitive processes on these forms of
higher-level mathematics. In this discussion, we address similari-
ties before the distinction. Then we draw overall conclusions and
note study limitations.

Similarities in Pathways to the Two Outcomes

Results support two broad conclusions about similarities in the
pathways. First, both types of fourth-grade outcomes depend on a
combination of general cognitive processes and early domain-
specific skill, as has been documented in the individual differences
literature for mathematics (Bailey, Watts, Littlefield, & Geary,
2014; DeStefano & LeFevre, 2004; Fuchs et al., 2012, 2010;
Geary, 2011). Second, for both outcomes, the effect of early
mathematics competencies on later achievement is substantial.
Every increase in initial math competence of one unit (across
foundational calculations and understanding about number) was
associated with an increase of .25 SD unit in later word-problem
solving and an increase of .28 SD unit in later prealgebraic knowl-
edge, even when controlling for the other foundational processes
and intermediary calculation variables in the model. (These esti-
mates do not take into account the contribution of foundational
word-problem solving skill. Also note that we use standardized
path values to interpret the magnitude of effects.)

This corroborates previous work showing that mathematics
achievement trajectories are established early (Bailey et al., 2014;
Duncan et al., 2007; Fuchs, Geary, Fuchs, Compton, & Hamlett,
2016). It extends the literature by contrasting two specific forms of
higher-order mathematics while controlling for a variety of cog-
nitive processes, thereby demonstrating the robust importance of
foundational mathematics performance for later development.
Moreover, we documented that the effects of intermediary calcu-
lation skill (accuracy and fluency) are substantial for both out-
comes even after accounting for prior cognitive processes and
foundational calculation skill and understanding about number: .19
in predicting the word-problem solving outcome and .17 in pre-
dicting the prealgebra outcome.

Findings also support conclusions about five more specific
similarities across the two fourth-grade outcomes. First, the cor-
relation between fourth-grade prealgebraic thinking and word-
problem solving was .71. We expected a significant relation based
on prior work showing connections between the domains. In a
randomized control trial (Fuchs et al., 2014), word-problem in-
struction (that did not include instruction on calculations) im-
proved prealgebra performance. Also, relational understanding of
the equal sign, reflected in measures of prealgebraic knowledge,
has been associated with the ability to use algebraic notation to
represent word problems (Powell & Fuchs, 2010). And word-
problem solving, which reflects understanding of relationships
between known and unknown quantities, may be supported by
prealgebraic thinking. Despite these earlier findings suggesting a
connection, the correlation of .71 is noteworthy.

The second more specific similarity in the child-level variables
that support development of competence in the two domains
concerns the roles of intermediary calculation accuracy versus
fluency. This issue is important for practice because disagreement
among mathematics educators focuses on whether calculation ac-
curacy is sufficient or whether calculation fluency provides added
value (e.g., Greene, 2010; Warner, 2006). A large literature dem-
onstrates a role for one or the other, but we identified only one
prior study that included both variables in the same models to
estimate the contribution of one while controlling for the effects of
the other. Carr and Alexeev (2011) concluded that both dimensions
of second-grade calculation skill contribute to fourth-grade perfor-
mance on a general mathematics achievement test. Our findings
provide corroborating data.

At the same time, the present study extends Carr and Alexeev
(2011) by demonstrating that fluency and accuracy affect two
specific types higher-order mathematics performance in compara-
ble ways (direct paths of .17 and .19), by controlling for early
number knowledge and general cognitive processes, and by index-
ing calculation fluency later when it may provide finer discrimi-
nations among children. Finding that both dimensions of calcula-
tion competence, accuracy and fluency, independently contribute
to success with two higher-order outcomes, word problems and
prealgebra, indicates that mathematics instruction in schools
should be designed to ensure accurate calculation performance as
well as fluent execution of procedures. This makes sense given that
fluency on lower-level skill frees attentional and working memory
resources to permit students to focus on the cognitive complexities
of higher-order performance.

The remaining salient similarities in pathways to the two forms
of fourth-grade higher-order mathematics performance involve
four cognitive processes. Reasoning, working memory, attentive
behavior, and processing speed each exerted a comparable direct
effect on both outcomes (.07 and .09 for reasoning; .06 and .07 for
working memory; .15 and .17 for attentive behavior; .04 and .09
for processing speed), and indirect effects also accrued for reason-
ing, attentive behavior, and processing speed via both dimensions
of intermediary calculation skill on both outcomes.

A shared role for reasoning reflects the challenging cognitive
demands associated with fourth-grade prealgebra (Fuchs et al.,
2012) and word-problem solving (Fuchs, Malone, et al., 2016).
Individual differences in reasoning ability may be further height-
ened by the difficulty many elementary-grade teachers have in
formulating conceptually rich instruction in these domains. Given
the number of unique school and classroom sequences students
experienced as they progressed through Grades 2–4, it was not
possible in the present study to capture individual student instruc-
tion or control for this source of variance. However, prior work
(e.g., Baroody & Ginsburg, 1983; Fuchs, Malone, et al., 2016;
McNeil & Alibali, 2005; Powell, 2012) suggests that teachers
experience difficulty in providing the kinds of instructional sup-
port needed to reduce the role of reasoning ability in these higher-
order forms of mathematics.

Attentive behavior, working memory, and processing speed as
sources of individual differences in both outcomes also make
sense, even though Fuchs et al. (2012) found only indirect effects
for attentive behavior and processing speed on prealgebraic knowl-
edge at third grade and no significant effects for working memory.
Identifying and testing number replacements for variables, han-
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dling operations on both sides of the equal sign, and building
problem models while deciphering text for word-problem solving
are transparently demanding of working memory and attentional
resources, while processing speed may support working memory
and attention resources. So we note that a key distinction between
the present study and Fuchs et al. (2012) is that we assessed
outcomes later, at end of fourth instead of third grade.

Major Distinctions in Pathways to the Two Outcomes

Despite these important similarities, we observed major distinc-
tions in the child-level variables that support development of
competence in the two domains. That is, the direct and total effects
of language comprehension on fourth-grade word problems were,
respectively, .15 and .14 (both significant). By contrast, respective
coefficients in predicting fourth-grade prealgebra were .05 and .04
(each nonsignificant), and the test of equality between the direct
paths and between the totals paths indicated a stronger role for
language comprehension on word-problem solving than on preal-
gebra knowledge. Further, our robustness reliability check, con-
ducted on odd versus even cases, provided cross-validation for a
distinctive role for language comprehension on word-problems
versus prealgebra.

These findings suggest that word-problem performance with its
symbolic complexity (involving language and the representation of
quantity) taps a greater variety of cognitive systems than the
prealgebra performance expected at end of fourth grade. This
makes sense given the transparent need for language comprehen-
sion in word-problem solving. Even so, language comprehension
is also required for processing school instruction. This finding, in
which language comprehension exerted an effect on word-
problems but not prealgebra, suggests that it operates primarily via
the former, not the latter process, at least at fourth grade in these
two specific mathematics domains for an urban population of
dominantly economic disadvantage.

Finding that language comprehension affects later word-
problem solving more than later prealgebraic knowledge in this
population also has instructional implications. On the one hand,
results suggest the importance of infusing arithmetic instruction
with an emphasis on unknowns, variables, and relational under-
standing of the equal sign. This is in line with Pillay et al.’s (1998)
model that poses a connection between arithmetic and algebra via
prealgebraic understanding of the relational meaning of the equal
sign and understanding about variables. On the other hand, find-
ings suggest the potential value of ensuring that word-problem
instruction addresses the needs of students who experience limi-
tations in language comprehension.

Even so, despite that the within-sample robustness reliability
check bolsters confidence in the conclusion that foundational
language comprehension plays a greater role in later word-problem
solving that in later prealgebraic knowledge, caution is in order.
This is because the robustness generalizability check indicates a
different pattern of effects for children of economic advantage
versus disadvantage. With economic disadvantage, analyses cor-
roborated a greater role for language comprehension in later word-
problem solving than in later prealgebra. However, with economic
advantage, language comprehension was comparably active in
supporting later performance in both higher-order mathematics
domains.

Readers might wonder if the lack of statistically significant
differences for language comprehension on word-problem solving
versus prealgebra in the subsample of 161 students of economic
advantage is due to inadequate statistical power (the economic
disadvantage subsample numbered 800). Yet, path coefficients
associated with the economic advantage subsample indicate oth-
erwise: The direct effect of language comprehension on later
word-problem solving was .18, while the direct effect of language
comprehension on prealgebra was .17; respective total effects of
language comprehension on prealgebra were .17 and .14. (In the
economic disadvantage subsample, the direct effect of language
comprehension on later word-problem solving was .15, while the
direct effect of language comprehension on prealgebra was .06;
respective total effects of language comprehension on prealgebra
were .15 and .05.)

A more plausible explanation for the differential pattern of
effects for language comprehension as a function of fourth-grade
mathematics outcome for these two populations resides with the
stronger language comprehension performance of the economic
advantage group. The effect size distinguishing the groups at start
of second grade approached 1 SD unit. The association between
economic status and language development is well documented
(e.g., Betancourt, Brodsky, & Hurt, 2015; Fernald, Marchman, &
Weisleder, 2013; Walker, Greenwood, Hart, & Carta, 1994). The
present study extends this literature by demonstrating that the
increased language capacity economic advantage affords may alter
its foundational relation with later, higher-order mathematics per-
formance. Here, second-grade language comprehension appears to
play a stronger supporting role in later prealgebra for children with
versus without economic advantage.

We already discussed two ways in which language comprehen-
sion may support later mathematics performance: its transparent
requirement for solving word problems, and teachers’ heavy reli-
ance on language-mediated explanations of math ideas and proce-
dures. A third way is via the inner speech (Zakin, 2007) and
self-explaining (Chi & Van Lehn, 1991; Siegler, 2002) children
may use to decipher and navigate complex problem-solving pro-
cesses. This includes identifying and executing strategies for solv-
ing nonstandard equations that are rarely addressed in school
curriculum. Such reliance, however, requires a level of verbal
facility (Rittle-Johnson, 2006). So the economic advantage group,
with a higher level of overall performance across this group’s span
of individual differences, may have provided the basis for a stron-
ger connection between foundational language comprehension and
later prealgebra, via reliance on inner speech and self-explaining.
Research on this potential explanation is warranted. More gener-
ally, the failure of effects to generalize to the smaller subsample of
students who did not qualify for the subsidy indicates the need for
additional research examining how and why the role of language
comprehension on prealgebra differs for children of economic
advantage and disadvantage.

Conclusions and Limitations

As reflected in the influence of developmental studies that focus
on general mathematics achievement tests (Duncan et al., 2007;
Halberda, Mazzocco, & Feigenson, 2008; Krajewski & Schneider,
2009), a frequent assumption is that the pathways to higher-order
mathematics competence are shared across the various strands of
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performance. This would make sense for the development of
word-problem solving and prealgebraic knowledge, given the po-
tential connections and the empirical findings already discussed
for these two domains. Moreover, we found more sources of
similarity than difference in the pathways, which supports an
overall conclusion that the pathways are more alike than different.

Even so, our results suggest the need for more refined analysis.
Despite many important similarities, we did identify a major
distinction between the pathways to fourth-grade prealgebraic ver-
sus word-problem performance. That is, language comprehension
(at the start of second grade) is more critical to the development of
later word-problem solving than for later prealgebraic knowledge.
This finding suggests the need to adjust instruction on word
problems and prealgebra in ways that address individual student
profiles of cognitive resources. It also suggests the importance of
additional research to explore the similarities and distinctions in
pathways for other specific mathematics domains at other grades.

These conclusions need to be understood within the constraints
of four study limitations. First, although our predictors captured a
substantial portion of the variance in the two outcomes, figures that
are similar to those reported in previous individual difference
studies in mathematics, 52% of the variance remained unexplained
for the prealgebra outcome and 43% remained unexplained for the
word-problem outcome. Considering additional cognitive pro-
cesses, such as other forms of working memory (inhibition and
updating; Miyake & Shah, 1999), 3-D spatial visualization (Tolar
et al., 2009), and analogical or inferential reasoning (e.g., Holyoak
& Thagard, 1997), may produce insights into additional processes
that support the transition from early to higher-order forms of
mathematical competence. Second, our measure of prealgebraic
knowledge assessed solving unknowns in nonstandard equations
and identifying unknowns in function tables. Other methods for
operationalizing prealgebra may produce different results. Future
work should contrast strategies. Third, we measured each construct
with a particular measure. Including multiple measures to permit
use of latent constructs is preferable, and this should be pursued.
Fourth, conclusions about causality should be avoided because,
although predictive relations were examined, our methods were
correlational.

Finally, we note again that the main distinctions in the language
comprehension pathways to prealgebra versus word-problem solv-
ing, although internally reliable, appear to generalize only to
children of economic disadvantage. This underscores the need to
conduct generalizability checks, as suggested by Duncan et al.
(2007), when examining the effects of foundational skill and
cognitive processes on later academic outcomes.
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